Developing & Prioritizing Mitigation Strategies

Framework

- 1) Set Transportation Wedge Goal.
- 2) Analyze Wedge. Define significant drivers of GHGs.
- 3) Understand Drivers. Explore what we know about those key sources of GHGs.
- **4) Brainstorm Strategies.** Create "strategy buckets" that address those drivers.
- 5) Set Criteria and Methodology. Define what matters most for strategies. Develop quantitative and qualitative evaluation methods for comparing relative effectiveness of strategies.
- 6) Prioritize Strategies. Gather information on relative effectiveness of strategies to address drivers and meet criteria.

Set Goal for Transportation Wedge

State Goals

Maine's Transportation Wedge

PERCENTAGE OF EMISSIONS BY SECTOR FOR US AND MAINE (2016)

Source: EIA, SEDS Database

Wedge Trend Line

Transportation Wedge Goal

Given that...

- Transportation emits 54% emissions
- Transportation emissions are growing

....What should our working group's GHG reduction goal be for the transportation wedge?

DATA CHECK:

Is there less opportunity for significant GHG reductions from other sectors?

Analyze Wedge and Subwedges

Wedges in the Wedge

2017 U.S. Transportation Sector GHG Emissions by Source

2. Understand Drivers

What do we know about light duty vehicle use in Maine?

- Mainers drive 13,500 miles/year.
- Vehicle miles travelled are increasing.
- Land use is driving increases in traffic and travel distances.
- Congestion increasing in Greater Portland.
- Most trips are by people driving alone.

- 30% of trips are work trips which are longer distances than other types of trips.
- Older adults are growing segment of population.
- Growing market of people wanting to live car light or free.
- Rural and suburban drivers drive
 a lot: 2x as much as urban drivers.
- Urban areas generate more total emissions.

What do we know about light duty vehicle use in Maine?

- Cars stay on roads for 13+ years.
- Sales increasing of lower efficiency vehicles. Pick-ups and heavy weight vehicles preferred.
- Bigger vehicles aren't paying a fair share of road maintenance.
- Increasing fuel economy has diminishing returns.

- Hybrid sales are increasing.
- **EV** penetration is low now.
- EV market options are increasing.
- People have "range anxiety".

- What percentage of GHGs are from rural vs. suburban vs. urban drivers?
- What percentage of the vehicle fleet are dirty/ low fuel economy that should come off the roads?

What do we know about heavy duty vehicle use in Maine?

- Compose 10% of traffic, but over 20% of emissions.
- **Used Constantly.** Trucks are continually in use to transport freight.
- **Growing Delivery Services.** With online shopping, truck deliveries are increasing.
- Long Use Life. Trucks stay on the road for more years than cars.
- Large Fleets Turnover faster than smaller fleets.

- Lots of Idling.
- Trucks disproportionately wear out infrastructure.
- Use Diesel. Our truck fleets run exclusively on diesel.
- Few Electric Options available on the market.
- School Buses are a Biggest Public Transit Fleet in Maine.

- What are the sub-wedges in the heavy duty wedge?
- What impact does online shoping delivery have on net GHGs?
- What percentage of each weight class do we have in Maine?
- Are boat emissions important?
- What are the causes of airplane GHGs?
- What are the viable road technology upgrades available for trucks?
- Will autonomous trucks reduce GHGs?

Brainstorm Strategies

The Two Big Strategies

Vehicles pollute less

+

People drive less

Less transportation carbon pollution

Vehicles pollute less

Increase vehicle efficiency

- Increase diesel engine efficiency— 4.1
- Improve driver behavior & vehicle maintenance 3.7
- Use low emissions refrigerants 2.6
- Reduce speed limits 2.0
- Maintain fuel economy standard
- Take (and keep) inefficient vehicles off the road

Increase lowcarbon vehicles

- Increase EVs 3.4
- Increase PHEVs 5.9
- Increase HEVs 5.9
- Transition to biodiesel 2.9
- Increase hydrogen vehicles 2.5

DATA CHECK:

What are assumptions behind green numbers?

People drive less

Driving cost reflects true cost

- Cap and trade 4.6
- Pay as you drive insurance 3.5
- Miles driven fee 2.3
- Congestion pricing 1.6
- Increase fuel tax
- Increase tolls

DATA CHECK:

What are assumptions behind green numbers?

Walkable places

■ Compact development – 3.9

Working from Home

- Compressed work week 2.4
- Telecommuting 0.6

Rideshare

■ Rideshare – 0.2

Different modes

- Walking 0.3
- Biking 0.2
- Transit 0.06 0.11

People are driving more

Why would people drive less?

Develop Criteria & Methodology for Selecting Strategies

Potential Criteria

- Quick actions and quick results
- Expected timeline for benefit (and conversely, consideration of whether we're locking in something less desirable)
- Proven in other places
- Ease of implementation (fewer decisionmakers, less disruptive lifestyle changes, ability for state to control or influence, appeal to residents)

- Bang for the buck
- Possible compounding/ synergy between strategies
- Possible rebound effects
- Co-benefits
- Advances more equitable way for paying for transportation
- Is Lead by Example opportunity
- Impact on peak load
- Supports climate adaptation

Method

Quantitative

Can we use an interactive model to help us understand:

- Data validation
- Common metric
- How strategies interact
- Possible rebound/ induced travel impacts
- The impacts of amping up or amping down a strategy

Qualitative

Develop scoring of co-benefits with common framework and scale

- Resiliency
- Jobs
- Transition

5. Prioritize Strategies

Visualizing

